Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Methylimidazolium hydrogen maleate

Zhi-Xiong Liu

College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, People's Republic of China, and College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
Correspondence e-mail: zxliu1977@yahoo.com.cn
Received 31 January 2009; accepted 4 February 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.046 ; w R$ factor $=0.130$; data-to-parameter ratio $=15.6$.

Molecules in the title compound, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$, are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into onedimensional chains parallel to [101]. These chains are in turn linked by an $R_{2}^{2}(8)$ motif, formed by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, into corrugated sheets running parallel to $(10 \overline{1})$. These sheets are further linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions are also present.

Related literature

For related structures, see: Aakeröy \& Salmon (2005); Liu \& Meng (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$
$M_{r}=198.18$
Monoclinic, C2/c
$a=13.9897$ (14) \AA

$$
\begin{aligned}
& b=7.2274(7) \AA \\
& c=20.533(2) \AA \\
& \beta=108.310(2)^{\circ} \\
& V=1970.9(3) \AA^{3}
\end{aligned}
$$

$Z=8$

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
$0.10 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection
Bruker SMART APEX CCD area- 7461 measured reflections detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.979, T_{\text {max }}=0.991$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.130 \quad$ independent and constrained
$S=0.99$
2143 reflections
137 parameters

2143 independent reflections 1273 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 3 A \cdots \mathrm{O} 3$	$1.20(3)$	$1.21(3)$	$2.4085(18)$	$174(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	$0.901(19)$	$1.80(2)$	$2.701(2)$	$176.3(17)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.95(2)$	$1.77(2)$	$2.713(2)$	$171.2(17)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.64	$3.471(2)$	150
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.59	$3.490(2)$	155
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\text {iii }}$	0.93	2.66	$3.544(2)$	158
Symmetry codes:	(i)	$x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2} ;$	(ii)	$-x+1,-y+1,-z+1 ; \quad$ (iii)
$-x+\frac{3}{2},-y+\frac{5}{2},-z+1$.				

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work received financial support mainly from Yangtze University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2769).

References

Aakeröy, C. B. \& Salmon, D. J. (2005). CrystEngComm, 7, 439-448.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, Z.-X. \& Meng, X.-G. (2006). Acta Cryst. E62, o1286-o1288.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

2-Methylimidazolium hydrogen maleate

Z.-X. Liu

Comment

As part of the continuing studies on the synthesis of co-crystal or organic salts involving imidazole (Liu \& Meng, 2006), the crystal structure of title compound (I) is reported. It was obtained by mixing a 2:1 molar amounts of 2-methylimidazole and 2-maleic acid and in 95% methanol solution at room temperature.

According to Aakeröy and Salmon (2005) complex (I) is an organic salt. In (I), one of the carboxyl protons is transferred to the imidazole N atom, forming a $1: 1$ anhydrous organic adduct. The two carboxyl groups in the maleate anion are hydro-gen-bonded to each other via atom H3A located approximately at the mid-point of atoms O1 and O3 (Fig.1).

In the crystal structure, by a combination of $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2, \mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 4{ }^{\mathrm{i}}$ and $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 3{ }^{\mathrm{i}}$ hydrogen bonds (symmetry codes as in Table 1) molecules in (I) are linked into a one-dimensional chain parallel to the [101] direction (Fig.2). These adjacent chains are linked by a $R_{2}{ }^{2}(8)$ hydrogen motif (Bernstein et al., 1995) originating from two weak centrosymmetric C6-H6 \cdots O2 (3/2-x, 5/2-y, 1-z) hydrogen bonds, into a corrugated sheet running parallel to the ($10 \overline{1}$) plane (Fig.3). These sheets are further linked by weak $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3(1-x, 1-y, 1-z)$ hydrogen bonds, forming a three-dimensional network.

Experimental

All the reagents and solvents were used as obtained without further purification. A 1:2 molar amounts of maleic acid (0.1 mmol, 11.6 mg) and 2-methylimidazole ($0.2 \mathrm{mmol}, 16.4 \mathrm{mg}$) were dissolved in 95% methanol (10 ml). The mixture was stirred for half an hour at room temperature and then filtered. The resulting solution was kept in air for one week. Blockshaped crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of a solution of (I).

Refinement

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding modes, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.96 \AA, 1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. H atoms bonded to N and O atoms were also found in the difference maps and their distances were refined freely (see Table 1 for the distances), and the $U_{\text {iso }}(\mathrm{H})$ values being set k times of their carrier atoms ($\mathrm{k}=1.2$ for N and 1.5 for O atoms)

Figures

Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown in dashed lines.

supplementary materials

Fig. 2. Part of the crystal structure of (I), showing the formation of the one-dimensional chain linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds parallel to the [101] direction. (symmetry code: $\mathrm{i}=1 / 2+x, 3 / 2-y, 1 / 2+z$)

Fig. 3. Part of the crystal structure of (I), showing the formation of the two-dimensional corrugated sheet linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (a) view perpendicular to the $(10 \overline{1})$ plane and (b) view along to the $(10 \overline{1})$ plane, respectively. Only H atoms involved in hydrogen bonds are shown.

2-Methylimidazolium hydrogen maleate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}^{-}$
$M_{r}=198.18$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=13.9897$ (14) \AA
$b=7.2274$ (7) \AA
$c=20.533(2) \AA$
$\beta=108.310(2)^{\circ}$
$V=1970.9(3) \AA^{3}$
$Z=8$
$F_{000}=832$
$D_{\mathrm{x}}=1.336 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1457 reflections
$\theta=3.1-21.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, colorless
$0.10 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector
diffractometer
Radiation source: fine focus sealed Siemens Mo tube
Monochromator: graphite
$T=295 \mathrm{~K}$
0.3° wide ω exposures scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.979, T_{\text {max }}=0.991$
7461 measured reflections

Refinement

Refinement on $F^{2} \quad$ Secondary atom site location: difference Fourier map
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$

2143 independent reflections
1273 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.027$
$\theta_{\text {max }}=27.0^{\circ}$
$\theta_{\min }=2.1^{\circ}$
$h=-17 \rightarrow 17$
$k=-9 \rightarrow 9$
$l=-26 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.130$
$S=0.99$
2143 reflections
137 parameters
Primary atom site location: structure-invariant direct methods
independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0703 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C1	$0.77143(12)$	$0.6738(2)$	$0.65115(8)$	$0.0603(4)$
C2	$0.64878(15)$	$0.5430(3)$	$0.57064(11)$	$0.0810(6)$
H2	0.5957	0.5264	0.5303	0.097^{*}
C3	$0.68665(14)$	$0.4163(3)$	$0.61863(11)$	$0.0812(6)$
H3	0.6654	0.2943	0.6183	0.097^{*}
C4	$0.84501(15)$	$0.8105(3)$	$0.69038(10)$	$0.0855(6)$
H4A	0.8699	0.7731	0.7376	0.128^{*}
H4B	0.8131	0.9293	0.6872	0.128^{*}
H4C	0.9000	0.8183	0.6720	0.128^{*}
C5	$0.61393(13)$	$1.0269(2)$	$0.46763(9)$	$0.0630(5)$
C6	$0.59800(13)$	$1.1982(2)$	$0.42603(9)$	$0.0641(5)$
H6	0.6446	1.2915	0.4440	0.077^{*}
C7	$0.52819(11)$	$1.2406(2)$	$0.36726(9)$	$0.0643(5)$
H7	0.5327	1.3601	0.3517	0.077^{*}
C8	$0.44457(13)$	$1.1297(3)$	$0.32255(9)$	$0.0652(5)$
N1	$0.70226(11)$	$0.7022(2)$	$0.59149(8)$	$0.0687(4)$
H1	$0.6924(14)$	$0.811(3)$	$0.5686(9)$	0.082^{*}
N2	$0.76299(11)$	$0.4998(2)$	$0.66877(8)$	$0.0665(4)$
H2A	$0.8074(14)$	$0.439(3)$	$0.7076(10)$	0.080^{*}
O1	$0.55899(10)$	$0.88414(17)$	$0.44508(7)$	$0.0830(4)$
O2	$0.68111(10)$	$1.02685(18)$	$0.52321(7)$	$0.0844(4)$
O3	$0.43419(11)$	$0.96097(18)$	$0.33767(7)$	$0.0885(5)$
H3A	$0.495(2)$	$0.916(3)$	$0.3917(15)$	0.133^{*}
O4	$0.38675(9)$	$1.20541(19)$	$0.27165(6)$	$0.0826(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0574(10)$	$0.0627(11)$	$0.0610(10)$	$0.0021(8)$	$0.0187(8)$	$-0.0008(8)$
C2	$0.0663(11)$	$0.0887(15)$	$0.0787(13)$	$-0.0016(10)$	$0.0093(10)$	$-0.0184(11)$
C3	$0.0727(12)$	$0.0667(12)$	$0.0994(15)$	$-0.0082(10)$	$0.0202(11)$	$-0.0139(11)$
C4	$0.0861(13)$	$0.0770(14)$	$0.0872(14)$	$-0.0151(10)$	$0.0186(11)$	$-0.0040(10)$
C5	$0.0611(10)$	$0.0644(11)$	$0.0618(11)$	$-0.0024(8)$	$0.0169(9)$	$-0.0047(8)$
C6	$0.0662(10)$	$0.0583(10)$	$0.0644(11)$	$-0.0138(8)$	$0.0158(9)$	$-0.0052(8)$
C7	$0.0649(10)$	$0.0580(10)$	$0.0660(11)$	$-0.0100(8)$	$0.0147(9)$	$-0.0006(8)$
C8	$0.0631(11)$	$0.0734(12)$	$0.0588(11)$	$-0.0047(9)$	$0.0188(9)$	$-0.0052(9)$
N1	$0.0679(9)$	$0.0715(10)$	$0.0631(9)$	$0.0079(8)$	$0.0154(8)$	$0.0042(7)$
N2	$0.0633(9)$	$0.0610(9)$	$0.0712(10)$	$0.0041(7)$	$0.0156(8)$	$0.0035(7)$
O1	$0.0929(9)$	$0.0625(8)$	$0.0787(9)$	$-0.0138(7)$	$0.0056(8)$	$0.0039(6)$
O2	$0.0830(9)$	$0.0878(10)$	$0.0658(8)$	$-0.0080(7)$	$-0.0005(7)$	$0.0060(6)$
O3	$0.0962(10)$	$0.0716(9)$	$0.0768(9)$	$-0.0281(7)$	$-0.0028(7)$	$-0.0017(7)$
O4	$0.0748(8)$	$0.0894(9)$	$0.0693(8)$	$-0.0015(7)$	$0.0021(7)$	$0.0008(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.317(2)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.324(2)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.471(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.327(3)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.366(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{N} 2$	$1.369(2)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
$\mathrm{C} 5-\mathrm{O} 2$	$1.230(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$107.46(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4$	$125.99(16)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 4$	$126.55(16)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$107.26(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.4
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2$	126.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$106.84(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	126.6
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{H} 3$	126.6
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5

$\mathrm{C} 5-\mathrm{O} 1$	$1.283(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.481(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.328(2)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.476(2)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 8-\mathrm{O} 4$	$1.2307(19)$
$\mathrm{C} 8-\mathrm{O} 3$	$1.278(2)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.901(19)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.95(2)$
$\mathrm{O} 1-\mathrm{H} 3 \mathrm{~A}$	$1.20(3)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$1.21(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$130.67(15)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	114.7
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	114.7
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$130.74(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	114.6
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	114.6
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{O} 3$	$122.41(17)$
$\mathrm{O} 4-\mathrm{C} 8-\mathrm{C} 7$	$117.90(17)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 7$	$119.69(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$109.26(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	$124.6(12)$
C2-N1-H1	$126.1(12)$
C1-N2-C3	$109.18(16)$
C1-N2-H2A	$125.4(11)$
C3-N2-H2A	$125.1(11)$

sup-4

supplementary materials

$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	$122.12(17)$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{H} 3 \mathrm{~A}$	$111.7(11)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6$	$117.90(15)$	$\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 1$	$113.4(6)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$119.98(16)$	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$112.4(11)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$0.3(2)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$179.34(16)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-175.16(18)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$-0.1(2)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$5.4(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$0.27(19)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-1.9(3)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$-179.18(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 4$	$176.67(17)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	$-0.3(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 3$	$-3.0(3)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 1$	$-0.7(7)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$-0.11(19)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 1$	$179.9(6)$

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 3$	$1.20(3)$	$1.21(3)$	$2.4085(18)$	$174(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2$	$0.901(19)$	$1.80(2)$	$2.701(2)$	$176.3(17)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.95(2)$	$1.77(2)$	$2.713(2)$	$171.2(17)$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.93	2.64	$3.471(2)$	150
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.59	$3.490(2)$	155
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{iiii}}$	0.93	2.66	$3.544(2)$	158
Symmetry codes: (i) $x+1 / 2,-y+3 / 2, z+1 / 2 ;($ ii) $-x+1,-y+1,-z+1 ;($ (iii $)-x+3 / 2,-y+5 / 2,-z+1$.				

supplementary materials

Fig. 1

Fig. 2

Fig. 3

